fracspy.mtinversion.mtwi.MTW#
- class fracspy.mtinversion.mtwi.MTW(x, y, z, recs, vel, src_idx, comp_idx, omega_p, aoi, t, wav, wavc, Ms_scaling=1.0, engine='numpy', multicomp=False, cosine_sourceangles=None, dists=None)[source]#
Moment-Tensor Waveform modelling and inversion
This class acts as an abstract interface for users to perform moment-tensor modelling of waveforms
- Parameters:
- x
numpy.ndarray X-axis
- y
numpy.ndarray Y-axis
- z
numpy.ndarray Z-axis
- recs
numpy.ndarray Receiver locations of size \(3 \times n_r\)
- vel
numpy.ndarray Velocity model of size \(n_x \times n_y \times n_z\)
- src_idx
numpy.ndarray Source location indices (relative to x, y, and z axes)
- comp_idx
int Index of component at receiver side
- omega_p
float Peak frequency of the given wave
- aoi
tuple Area of interest for waveform computation defined as half windows to place either size of the source in center of region (defined by src_idx)
- t
numpy.ndarray Time axis for data
- wav
numpy.ndarray Wavelet.
- wavcenter
int Index of wavelet center
- Ms_scaling
float Scaling to be incorporated in the MTI
- engine
str, optional Engine used for computations (
numpyornumba).- multicomp: obj:boolean
Whether running for single or multicomponent data
- cosine_sourceangles
numpy.ndarray Cosine source angles of size \(3 \times n_r \times n_x \times n_y \times n_z\)
- dists
numpy.ndarray Distances of size \(\times n_r \times n_x \times n_y \times n_z\)
- x
Methods
__init__(x, y, z, recs, vel, src_idx, ...[, ...])adjoint(data)Adjoint modelling
invert(data[, kind])lsi(data[, niter, verbose])model(mt)Modelling
sparselsi(data[, niter, l1eps, verbose])