fracspy.mtinversion.mtwi.MTW#

class fracspy.mtinversion.mtwi.MTW(x, y, z, recs, vel, src_idx, comp_idx, omega_p, aoi, t, wav, wavc, Ms_scaling=1.0, engine='numpy', multicomp=False, cosine_sourceangles=None, dists=None)[source]#

Moment-Tensor Waveform modelling and inversion

This class acts as an abstract interface for users to perform moment-tensor modelling of waveforms

Parameters:
xnumpy.ndarray

X-axis

ynumpy.ndarray

Y-axis

znumpy.ndarray

Z-axis

recsnumpy.ndarray

Receiver locations of size \(3 \times n_r\)

velnumpy.ndarray

Velocity model of size \(n_x \times n_y \times n_z\)

src_idxnumpy.ndarray

Source location indices (relative to x, y, and z axes)

comp_idxint

Index of component at receiver side

omega_pfloat

Peak frequency of the given wave

aoituple

Area of interest for waveform computation defined as half windows to place either size of the source in center of region (defined by src_idx)

tnumpy.ndarray

Time axis for data

wavnumpy.ndarray

Wavelet.

wavcenterint

Index of wavelet center

Ms_scalingfloat

Scaling to be incorporated in the MTI

enginestr, optional

Engine used for computations (numpy or numba).

multicomp: obj:boolean

Whether running for single or multicomponent data

cosine_sourceanglesnumpy.ndarray

Cosine source angles of size \(3 \times n_r \times n_x \times n_y \times n_z\)

distsnumpy.ndarray

Distances of size \(\times n_r \times n_x \times n_y \times n_z\)

Methods

__init__(x, y, z, recs, vel, src_idx, ...[, ...])

adjoint(data)

Adjoint modelling

invert(data[, kind])

lsi(data[, niter, verbose])

model(mt)

Modelling

sparselsi(data[, niter, l1eps, verbose])