fracspy.detection.stacking.maxdiffstack#
- fracspy.detection.stacking.maxdiffstack(data, x, y, z, tt, dt, stack_type=None, swsize=0, polcor_type=None, recs=None)[source]#
Maximum diffraction stack function for microseismic event detection.
This routine uses diffraction stacking to obtain the time-dependent maximum stack function used for microseismic event detection.
- Parameters:
- data
numpy.ndarray
Data of shape \(n_r \times n_t\)
- x
numpy.ndarray
Imaging area grid vector in X-axis
- y
numpy.ndarray
Imaging area grid vector in Y-axis
- z
numpy.ndarray
Imaging area grid vector in Z-axis
- tt
numpy.ndarray
Traveltime table of size \(n_r \times n_x \times n_y \times n_z\)
- stack_type
str
, optional, default: None Diffraction stacking type (imaging condition), default None is the same as
squared
. Types:absolute
(absolute value),squared
(squared value),semblance
(semblance-based).- swsize
int
, optional, default: 0 Sliding time window size for semblance-based type, amount of time steps
- polcor_type
str
, optional, default: None Polarity correction type to be used for amplitudes. None is default for no polarity correction,
mti
is for polarity correction based on moment tensor inversion.- recs
numpy.ndarray
, optional, default: None Array of shape (3, nrec) containing receiver coordinates. Must be provided if polcor_type is not None
- data
- Returns:
- msf
numpy.ndarray
Time-dependent maximum stack function
- ds_full
numpy.ndarray
Diffraction stack array reshaped to 4D (nt,nx,ny,nz)
- msf
Notes
For every time step \(t\) the maximum of the diffraction stacking imaging function \(F(\mathbf{r},t)\) over all potential locations \(\mathbf{r}\) is evaluated [1]:
\[F_t(t) = \max_{\mathbf{r}} F(\mathbf{r},t),\]where \(F_t(t)\) is referred to as the maximum stack function or MSF [2].
References
[1]Anikiev, D. (2015). Joint detection, location and source mechanism determination of microseismic events (Doctoral dissertation). St. Petersburg State University. St. Petersburg. https://disser.spbu.ru/files/phdspsu2015/Anikiev_PhD_web_final.pdf
[2]Anikiev, D., Valenta, J., Staněk, F. & Eisner, L. (2014). Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing. Geophysical Journal International, 198(1), 249–258. https://doi.org/10.1093/gji/ggu126