fracspy.mtinversion.greensfunction.mt_pwave_greens_multicomp#

fracspy.mtinversion.greensfunction.mt_pwave_greens_multicomp(n_xyz, cosine_sourceangles, dists, vel, MT_comp_dict, omega_p)[source]#

Particle velocity components of the P-wave Green’s functions within a volumetric source grid for all moment tensor components

Compute Green’s functions for the 3-components (x, y, and z) of the P-wave between sources defined in a regular 3-dimensional grid and a set of receivers

Parameters:
n_xyztuple

Number of grid points in X-, Y-, and Z-axes for the source area

cosine_sourceanglesnumpy.ndarray

Cosine source angles of size \(3 \times n_r \times n_x \times n_y \times n_z\)

distsnumpy.ndarray

Distances of size \(\times n_r \times n_x \times n_y \times n_z\)

velnumpy.ndarray

Velocity model

MT_comp_dictdict

Dictionary containing Moment Tensor parameters

omega_pfloat

Peak frequency of the given wave

Returns:
Gxnumpy.ndarray

x-component Green’s functions of size \(6 \times n_r \times n_x \times n_y \times n_z\)

Gynumpy.ndarray

y-component Green’s functions of size \(6 \times n_r \times n_x \times n_y \times n_z\)

Gznumpy.ndarray

z-component Green’s functions of size \(6 \times n_r \times n_x \times n_y \times n_z\)

Notes

This method computes the amplitudes of the 3-component particle velocity Green’s functions associated to the first P-wave arrival, for a uniform grid of source location based on the far-field particle velocity expression from a moment tensor source in a homogeneous full space for all of the 6 different moment tensor components.